第一页欧美-第一页综合-丁香花成人另类小说-丁香久久-顶级欧美色妇xxxxbbbb

學(xué)術(shù)咨詢(xún)

讓期刊論文更省時(shí)、省事、省心

硅酸鹽學(xué)報(bào)論文撰寫(xiě)范例

時(shí)間: 分類(lèi):技巧指導(dǎo) 次數(shù):

硅酸鹽學(xué)報(bào)是北大核心,CSCD,EI收錄刊物 ,由中國(guó)科學(xué)技術(shù)協(xié)會(huì)主管,中國(guó)硅酸鹽學(xué)會(huì)主辦,由《硅酸鹽學(xué)報(bào)(中英文)》編輯部編輯出版,是無(wú)機(jī)非金屬材料研究領(lǐng)域的綜合性學(xué)術(shù)期刊。這本學(xué)報(bào)論文撰寫(xiě)要求嚴(yán)格,摘要和文章正文都有嚴(yán)格的要求,下面分享詳細(xì)的撰寫(xiě)范例:

  硅酸鹽學(xué)報(bào)是北大核心,CSCD,EI收錄刊物,由中國(guó)科學(xué)技術(shù)協(xié)會(huì)主管,中國(guó)硅酸鹽學(xué)會(huì)主辦,由《硅酸鹽學(xué)報(bào)(中英文)》編輯部編輯出版,是無(wú)機(jī)非金屬材料研究領(lǐng)域的綜合性學(xué)術(shù)期刊。這本學(xué)報(bào)論文撰寫(xiě)要求嚴(yán)格,摘要和文章正文都有嚴(yán)格的要求,下面分享詳細(xì)的撰寫(xiě)范例:

硅酸鹽學(xué)報(bào)

  一、“英文長(zhǎng)摘要”格式要求(綜述)

  1、篇幅:英文長(zhǎng)摘要篇幅要求在800~1000字(單詞數(shù))。

  2、結(jié)構(gòu):

  (1) 題目、作者和單位(與中文信息對(duì)應(yīng)的英文信息)

  (2) 英文長(zhǎng)摘要正文:

  1)敘述本文研究領(lǐng)域的重要性和重要研究進(jìn)展;

  2)結(jié)論與展望(Summary and prospects)

  (3) 關(guān)鍵詞(Keywords)。

  3、不要加參考文獻(xiàn)。如果有引用其他文章,建議作者轉(zhuǎn)述。

  4、請(qǐng)刪除原英文摘要。

  5、“英文長(zhǎng)摘要”題目中的單詞首字母請(qǐng)大寫(xiě)(除介詞外)。

  6、 縮寫(xiě)首次出現(xiàn)時(shí)請(qǐng)用英文說(shuō)明全稱(chēng)或者說(shuō)明化學(xué)式。

  7、“英文長(zhǎng)摘要”請(qǐng)放在文末,參考文獻(xiàn)列表之后。

  二、“英文長(zhǎng)摘要”格式要求(研究論文)

  1、篇幅:英文長(zhǎng)摘要篇幅要求在800~1000字(單詞數(shù))。

  2、結(jié)構(gòu):

  (1) 題目、作者和單位(與中文信息對(duì)應(yīng)的英文信息)

  (2) 英文長(zhǎng)摘要正文:

  1)研究目的(Introduction)(突出所做工作的重要性和必要性);

  2)研究方法(Methods);

  3)創(chuàng)新性結(jié)果(Results and discussion);

  4)結(jié)論(Conclusions);

  (3) 關(guān)鍵詞(Keywords)。

  3、不要加參考文獻(xiàn)。如果有引用其他文章,建議作者轉(zhuǎn)述。

  4、請(qǐng)刪除原英文摘要。

  5、“英文長(zhǎng)摘要”題目中的單詞首字母請(qǐng)大寫(xiě)(除介詞外)。

  6、 縮寫(xiě)首次出現(xiàn)時(shí)請(qǐng)用英文說(shuō)明全稱(chēng)或者說(shuō)明化學(xué)式。

  7、“英文長(zhǎng)摘要”請(qǐng)放在文末,參考文獻(xiàn)列表之后

  三、兩篇論文摘要范例:

  文章1、原位反應(yīng)法制備 Cr2AlC-Fe 復(fù)合材料

  陳新華,翟洪祥,王文娟,黃振鶯(北京交通大學(xué),北京 100044)

  摘 要:采用原位反應(yīng)法制備了 Cr2AlC-Fe 系復(fù)合材料,并采用熱分析、X 射線(xiàn)衍射、掃描電子顯微鏡和三點(diǎn)彎曲實(shí)驗(yàn),研究了原位反應(yīng)的燒結(jié)工藝對(duì)產(chǎn)物和顯微結(jié)構(gòu)的影響,以及對(duì)原料中 Cr2AlC 的含量對(duì)復(fù)合材料性能的影響。結(jié)果表明:通過(guò)高溫原位反應(yīng),原料中 Cr2AlC 發(fā)生了分解,形成了網(wǎng)絡(luò)狀陶瓷增強(qiáng)結(jié)構(gòu),所制備的復(fù)合材料具有較好的強(qiáng)度和韌性,且隨著 Cr2AlC 含量的增加,復(fù)合材料的強(qiáng)度也在增加,但斷裂韌性逐漸下降。當(dāng)Cr2AlC 的體積分?jǐn)?shù)達(dá)到 30%時(shí),復(fù)合材料的抗彎強(qiáng)度達(dá) 1 417 MPa。

  關(guān)鍵詞:復(fù)合材料;原位反應(yīng);燒結(jié);彎曲行為

  中圖分類(lèi)號(hào):TB333 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):0454–5648(2013)01–

  Fabrication of Cr2AlC Fe-based Composites by in-situ Reaction Method

  CHEN Xinhua,ZHAI Hongxiang,WANG Wenjuan,HUANG Zhenying

  (Center of Materials Science and Engineering, School of Mechanical and Electronic Control Engineering,

  Beijing Jiaotong University, Beijing 100044)

  Abstract: A Cr2AlC-Fe composite, which could have potential applications in nuclear energy industry as engineering materials, was synthesized by an in-situ reaction method. The in-situ reactions between Cr2AlC and Fe at different temperatures and ratios were analyzed by thermogravimetric analysis-differential thermal analysis, X-ray diffraction and scanning electron microscopy, respectively.

  The effect of s Cr2AlC content on the bending behaviors was investigated. The results show that Cr2AlC can in-situ react with Fe, and decompose to form chromium carbide. The synthesized composite exhibits a higher flexural strength and a greater fracture toughness at room temperature.

  Key words: based composites; in situ reaction; sintering; bending behaviors

  文章2、錳氧化物在水系電池中的研究進(jìn)展與挑戰(zhàn)

  杜玲玉 1,畢嵩山 2,牛志強(qiáng) 2(1. 煙臺(tái)大學(xué)環(huán)境與材料工程學(xué)院,山東 煙臺(tái) 264005;2. 南開(kāi)大學(xué)化學(xué)學(xué)院,天津 300071)

  摘 要:水系二次電池因其安全性高、成本低以及對(duì)環(huán)境友好等特點(diǎn),在大規(guī)模儲(chǔ)能領(lǐng)域展現(xiàn)出廣闊的應(yīng)用前景。電極材料作為電池的關(guān)鍵組成部分,其性質(zhì)直接影響電池電化學(xué)性能。錳氧化物具有晶體結(jié)構(gòu)豐富、理論比容量高、氧化還原電位高、成本低等優(yōu)勢(shì),被認(rèn)為是最具發(fā)展?jié)摿Φ恼龢O材料之一。然而,錳氧化物存在導(dǎo)電性差、結(jié)構(gòu)不穩(wěn)定、錳溶解等問(wèn)題,使電池面臨倍率和循環(huán)性能差的嚴(yán)峻挑戰(zhàn),限制了其實(shí)際應(yīng)用。此外,錳氧化物的反應(yīng)機(jī)制較為復(fù)雜。

  針對(duì)上述問(wèn)題,本文通過(guò)調(diào)研有關(guān)錳氧化物的文獻(xiàn),首先分析了其晶體結(jié)構(gòu)類(lèi)型和特點(diǎn),進(jìn)一步按照電解液酸度梳理歸納了錳氧化物在(弱)酸性和堿性條件下的反應(yīng)機(jī)制,簡(jiǎn)要闡述了其在水系堿金屬離子、多價(jià)金屬離子以及非金屬離子二次電池體系的研究進(jìn)展,最后對(duì)未來(lái)高性能錳氧化物正極的發(fā)展方向進(jìn)行了展望。

  關(guān)鍵詞:水系電池;錳氧化物;晶體結(jié)構(gòu);反應(yīng)機(jī)制

  Progress and Challenges of Manganese Oxides in Aqueous Rechargeable Batteries

  DU Lingyu1, BI Songshan2, NIU Zhiqiang2

  (1. School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China;

  2. College of Chemistry, Nankai University, Tianjin 300071, China)

  Extended Abstract

  Aqueous rechargeable batteries have great prospects in the field of large-scale energy storage due to their high safety, low cost,and environmental friendliness. As a key component of batteries, electrode materials play important roles on their electrochemical performance. Vanadium oxides, manganese oxides, Prussian blue analogues, and organic materials are often used as active materials in aqueous batteries. Among these materials, vanadium oxides possess a variety of compounds, high theoretical specific capacity, andsuperior cycling performance. However, their redox potential is relatively low, restricting the operating voltage of aqueous batteries.

  Moreover, these materials are toxic, which are not conducive in the large-scale applications. Compared with vanadium oxides,Prussian blue analogues have a higher redox potential and a stable structure, but they have some disadvantage of low theoretical specific capacity, resulting in the low energy density of batteries. In contrast, organic materials possess abundant sources, facile structure regulation, and superior sustainability. However, their poor conductivity and low compaction density make it difficult to

  prepare high-loading electrodes. Compared with the materials above, manganese oxides have the advantages of diverse crystal structures, high theoretical specific capacity, high redox potential, non-toxicity, and low cost, which are beneficial for constructing high-performance aqueous batteries. Therefore, manganese oxides are considered as a promising electrode material in aqueous batteries. Recent efforts are made in the design of manganese oxides-based aqueous batteries, but the corresponding comprehensive review on this topic is still sparse.

  This review firstly analyzed the crystal structure types and characteristics of manganese oxides. According to the connection mode between MnO6 units, the crystal structure of manganese oxides can be divided into one-dimensional tunneled structure (i.e.,α-MnO2, β-MnO2, γ-MnO2, R-MnO2, Todorokite-MnO2), two-dimensional layered structure (i.e., δ-MnO2), and three-dimensional spinel structure (i.e., λ-MnO2, Mn3O4, LiMn2O4, ZnMn2O4). The characteristics of corresponding crystal structure were summarized.

  Manganese oxides exhibited unique physical and chemical properties, endowing their wide application as electrode materials in aqueous batteries.

  The reaction mechanisms of manganese oxides are rather complex in aqueous batteries, especially for aqueous zinc-ion batteries, which were summarized according to the acidity of electrolytes. In alkaline Zn–MnO2 batteries, MnO2 is firstly converted into MnOOH, and then Mn(OH)2 is formed. As the acidity of the electrolyte decreases, manganese oxides exhibit different electrochemical reactions, mainly including ion insertion–extraction, conversion, and dissolution–deposition (Mn2+/MnO2). The

  different electrochemical reaction mechanisms of manganese oxides provide plentiful energy storage chemistry for the design of aqueous battery systems. However, there are also irreversible side reactions and structural distortions in manganese oxides during the cycling process, which hinder their further development.

  The application of manganese oxides in aqueous batteries is briefly elaborated, including alkaline-metal-ions (such as Li+, Na+),multivalent-metal-ions (such as Zn2+, Mg2+, Al3+), and non-metallic-ions (such as H+, NH4+) batteries. To address the poor conductivity, unstable structure, as well as manganese dissolution of manganese oxides, nanostructure design, hetero-element doping,defect engineering, and composite construction with other conductive materials are adopted to regulate the electronic structure and alleviate the Jahn–Teller distortion. As a result, the rate capability and cycling stability of manganese oxides-based aqueous batteries are significantly improved.

  Summary and Prospects Although significant progress has been achieved in the design of manganese oxides for the electrodes of aqueous batteries, great challenges still remain in the scientific researches and practical application. The reaction mechanisms of manganese oxides are relatively complex, compared with those of other electrode materials. The reaction processes are also different for the same crystal structure. It is thus necessary to conduct the systematic and comprehensive investigation. The detailed structure evolution of manganese oxides could be revealed during electrochemical reaction process through some advanced in-situ characterization techniques (i.e., electrochemical quartz crystal microbalance, cryo-electron microscopy, X-ray photon-electron spectroscopy). The poor structure stability and manganese dissolution of manganese oxides result in the capacity attenuation uponcycling.

  The precise structure optimization strategies are urgently needed to suppress the Jahn–Teller distortion and enhance structural stability, such as interface interaction regulation through introducing carbon materials and other functional materials into the composites, valence state adjustment of manganese elements through anionic doping. Furthermore, the development of novel electrolyte systems also plays a crucial role in the improvement of electrochemical performances for manganese oxides-based

  aqueous batteries. High-concentrated electrolytes, molecular-crowding electrolytes, hydrated-eutectic electrolytes, and organic/inorganic hybrid electrolytes could reduce free water content and water molecule activity, regulate the solvation structure,which would be beneficial for suppressing manganese dissolution and promoting reaction kinetics. In addition, the diverse reactions of manganese oxides could be also utilized by adjusting the pH value of the electrolytes, thus developing the electrochemical energy

  storage devices with a high voltage, high capacity, and high rate capability. The electrochemical performance of manganese oxide electrodes with a high mass loading could be improved by the synergistic effect of material structure design and electrolyte optimization. Finally, some controllable methods of manganese oxides in a largescale could be further developed for the industrial application of aqueous batteries.

  Keywords aqueous batteries; manganese oxides; crystal structure; reaction mechanism

  上述就是硅酸鹽學(xué)報(bào)論文撰寫(xiě)范例,這本學(xué)報(bào)主要報(bào)道水泥基材料、陶瓷、玻璃、耐火材料、人工晶體、礦物材料、新能源材料、復(fù)合材料等相關(guān)領(lǐng)域的創(chuàng)新性科學(xué)研究成果。同時(shí)也被Scopus數(shù)據(jù)庫(kù)、英國(guó)《科學(xué)文摘》、美國(guó)《化學(xué)文摘》、俄羅斯文摘雜志等收錄,是大家值得投稿的刊物。

中文核心期刊推薦

SCI核心期刊推薦

主站蜘蛛池模板: 美国三级视频 | 久久亚洲私人国产精品 | 夜夜精品视频一区二区 | 看日本黄色大片 | 日本道色综合久久影院 | 国产一区二区三区免费播放 | 国产精品视频在线观看 | 古代级a毛片可以免费看 | 久久er精品视频 | 91大神精品长腿在线观看网站 | 这里只有精品视频 | a级网站| 国产高清天干天天美女 | 三级毛片免费看 | 黄色片s色| 一级一级毛片看看 | 日韩精品免费在线观看 | 亚洲黄色片视频 | 欧美在线观看视频免费 | 久久久久久a亚洲欧洲aⅴ | 狠狠干婷婷 | 欧美日韩亚洲一区二区三区在线观看 | 欧洲精品在线观看 | 国产成人亚洲精品老王 | 九色91蝌蚪 | 成年视频xxxxx免费播放软件 | 777欧美午夜精品影院 | 久久不卡日韩美女 | 欧美 日韩 亚洲另类专区 | 中文字幕在线播 | 日韩在线视频播放 | 午夜亚洲精品久久久久 | 国内外成人免费在线视频 | 亚洲视频在线观看不卡 | 狠狠色丁香久久综合婷婷 | 一区二区3区免费视频 | 欧美啊片 | 久在线 | 国产99久久九九精品免费 | 国产在线观看入口 | 日韩成人黄色片 |