Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.Special issues devoted to single topic of current interest will also be considered and published in this journal.
隨機矩陣理論(RMT)有著悠久而豐富的歷史,特別是近年來,在數學、科學和工程的許多不同領域都有重要的應用。RMT的范圍和應用包括經典分析、概率論、大數據統計分析,以及與圖論、數論、表示論的聯系,以及數學物理的許多領域。隨機矩陣理論的應用不斷涌現,歡迎新應用。一些例子是正交多項式理論、自由概率、可積系統、增長模型、無線通信、信號處理、數值計算、復雜網絡、經濟學、統計力學和量子理論。本刊還將考慮和出版專門討論當前感興趣的單一主題的特刊。
大類學科 | 分區 | 小類學科 | 分區 | Top期刊 | 綜述期刊 |
數學 | 4區 | PHYSICS, MATHEMATICAL 物理:數學物理 STATISTICS & PROBABILITY 統計學與概率論 | 4區 4區 | 否 | 否 |
JCR分區等級 | JCR所屬學科 | 分區 | 影響因子 |
Q3 | PHYSICS, MATHEMATICAL | Q3 | 1.209 |
STATISTICS & PROBABILITY | Q3 |
精選同類領域期刊,熱門推薦輕松get~
精選常見問題,答疑解惑輕松get~